What is California Cleaner-Burning Gasoline and Why is Flexibility Required in California?

March 1999

California Environmental Protection Agency

Air Resources Board

Overview

- History of California's vehicle fuels program
- California's Cleaner-Burning Gasoline program
- ♣ Recent activities
- Summary and conclusion
- **♦** Future activities

History of California's Vehicle Fuels Program

California Legislative Requirements for Mobile Sources

- Achieve maximum feasible reductions in PM,
 CO, and toxic air contaminants
- ◆ Achieve maximum emission reductions of VOC and NOx by earliest practicable date
- Adopt most effective combination of control measures on all classes of motor vehicles and their fuels

Motor Vehicle Fuels Control Strategy

- ◆ Treat vehicles / fuels as a system
 - Vehicle emission standards
 - Fuel standards
 - Include lubricants
- ◆ Flexible

California's Gasoline Programs

Year		
Adopted	Gasoline Related Programs	Action
1971	Reid Vapor Pressure (RVP)	Limit RVP to 9 psi in smog season
	Bromine Number	Limit reactivity of evaporative emissions
1975	Sulfur	Protect catalysts
	Manganese/Phosphorus	·
1976	Lead	Begin phase-out of lead
1982	Lead	Continue lead phase-out
1990	Phase 1 CaRFG	•
	- Reid Vapor Pressure	Limit RVP to 7.8 psi in smog season
	- Lead Phase-Out	Lead completely phased-out
	- Deposit Control Additives	Prevent/remove deposits in fuel system
1991	Phase 2 CaRFG	Cleaner Burning Gasoline
	Wintertime Oxygenates	Required 2% oxygen in winter
1994	Phase 2 CaRFG Predictive Model	Provides flexibility and lower costs
1998	Deposit Control Additives	Prevent combustion chamber deposits

Source: ARB/SSD

California Cleaner-Burning Gasoline Program

California Cleaner-Burning Gasoline Program

♦ Emissions performance based fuel parameter limits, not on general emissions criteria

* Limits on the following parameters:

RVP* Sulfur

T50 Benzene

T90 Aromatic Hydrocarbons

Olefins Oxygen Content

^{*} Only the summer RVP limit is fixed, at 7.0 psi

Emissions Response to Fuel Parameter Changes*

- * RVP Reduces evaporative VOC's
- Sulfur Reduces VOC's, NOx, sulfur oxides, toxics (improves catalyst effectiveness)
- ♦ Benzene Reduces toxics

^{*} Assumes holding other parameters constant and reduce subject parameter.

Emissions Response to Fuel Parameter Changes (continued)

- Aromatic Hydrocarbon Reduces VOC's, NOx, toxics
- ♦ Olefin Reduces NOx, toxics, slight increase in VOC's
- Oxygen Reduces CO, VOC's, and toxics;
 increases NOx
- * T50 & T90 Reduces VOC's, toxics, slight NOx increase

^{*} Assumes holding other parameters constant and reduce subject parameter.

Flexibility is Part of Cleaner-Burning Gasoline Program

7	Typical Before CBG	Flat Limit Standard	Average Standard	Cap for All Gasoline
RVP, psi	7.8	7.0	-	7.0
Sulfur, ppmw	150	40	30	80
Aromatic HC, vo	1% 32	25	22	30
Benzene, vol%	2.0	1.0	0.8	1.2
Olefins, vol%	9.9	6.0	4.0	10.0
Oxygen, wt%	0	1.8-2.2	,	1.8*-2.7
T90, deg F	330	300	290**	[*] 330
T50, deg F	220	210	200	220

^{*} Wintertime only

^{**.} Refinery cap = 310 deg F

Predictive Model

- Used for a majority of gasoline produced
- Provides alternative means of compliance through a statistical model
- ♦ Increases gasoline producer's flexibility
- Reduces compliance costs / improves production capability

Why Flexibility is Allowed

- ♦ Reduced capital expenditure by refiners by about 20%
- Allows refiners to adjust to unexpected events without interruptions
- Minimizes production costs and increases supplies
- ♦ No loss in emissions benefits
 - On average produces a modest decrease in emissions

Emission Reductions¹ from Cleaner-Burning Gasoline

	Percent	TPD
Volatile Organic		
Compounds (VOC)	17%	190
Oxides of Nitrogen (NOx)	11%	110
Sulfur Dioxide (SO2)	80%	30
Carbon Monoxide (CO)	11%	1300
Toxic Compounds Risk	40%	

^{1.} Based on on-road exhaust and evaporative emissions in 1996

Emissions Reductions Comparison

Pollutant	Federal RFG		California RFG
	Phase I (1995)	Phase II (2000)	(1996)
VOC	9%	15%	17%
NOx	4%	4%	11%
CO	11%	11%	11%
SO2	0%	0%	80%
Cancer Risk	30%	40%	40%

Benefits of Cleaner-Burning Gasoline

- ♦ Emission reductions equivalent to removing3.5 million vehicles from California roads
- ♦ Reduces smog forming emissions from motor vehicles by 15%
- ♦ Reduces potential cancer risk from vehicle emissions by 40%
- ♦ 1/4 of SIP reductions in 1996
- ♣ Reduces benzene emissions by half

Other Benefits

- * Reduces combustion chamber deposits
- ♦ Allows vehicle manufacturers to improve engine technology to reduce emissions further

Air Quality Benefits

- * Ambient benzene emissions cut in half
 - Northern California (Spring 1995 to Spring 1996)
 - Southern California (Spring 1994 to Spring 1996)
- ♦ Significant ozone reductions due to Cleaner-Burning Gasoline
 - South Coast Air Basin (10%)
 - Sacramento (12%)
- ♦ Reduced formation of fine particles

Oxygen Requirements in California

- ♦ California's rules are flexible, can be met without oxygen, except in winter in some areas
- California now allows all oxygenates approved by U.S. EPA
- ♦ All oxygenates are regulated equally, refiners choose the oxygenates, if any
- ❖ Federal minimum oxygen content prevents use of flexibility in most of state

Federal Minimum Oxygen Content Applies to Federal RFG Areas

Why Oxygenates Are Used

- Required by Congress
- ♦ Current refiners configured to take advantage of oxygenates, specifically MTBE
- ❖ Provide octane benefits
- ◆ Expand production volume
- Assist in producing complying gasoline
 - Depress T₅₀
 - Lowers sulfur, aromatics, benzene and olefins

Emissions Effects of 2% Oxygen in Gasoline

- ♦ 10% CO reduction
- ♦ 3% HC reduction
- ♦ 2% NOx increase
- ♦ Dilutes other properties such as sulfur, olefins, aromatics, and T50
- ♦ However, with the exception of CO, all of these effects can be accomplished by forgoing oxygenates and modifying other properties

To Replace Oxygen and Maintain Ozone and Toxic Reduction Requires

- ♦ Minor increase in refining to reduce sulfur, olefins, etc. to offset dilution effect
- ◆ Further reduction in sulfur (~20 ppm) and T50 (~5°C) to offset HC increase

Why Flexibility from Federal Oxygen Mandate is Needed and Appropriate

- ♦ Oxygen not essential to provide air quality benefits
- * California's Cleaner Burning Gasoline provides necessary emissions benefits
- ♦ Reduced flexibility increases costs
- ♦ Oxygen mandate makes it difficult to reduce MTBE use; ethanol is effectively the only alternative

Recent Activities

Winter Oxygen Rescission

- Recently rescinded minimum oxygen requirement except for South Coast area (Los Angeles region)
 - Required a two-year delay in Fresno and Tahoe,
 to protect state CO standard (Ends February 2000)
- ♦ As a result refiners are free under California rules to produce oxygenate free gasoline in most of California

Ability to Use Ethanol

- ♦ Recently increased maximum oxygen cap statewide to 3.5 wt%
 - Allows use of 10% ethanol, provided fuel complies with predictive model requirements
- ◆ Determined ethanol blends should not be exempt from RVP requirements
 - ARB made finding that ozone-forming potential would increase if gasoline with 10% ethanol were exempt from RVP limits
 - All fuels must meet 7.0 psi RVP standard

Percent Change in Emissions for 10% Ethanol Blend with 1 psi RVP increase Compared to Complying Fuel*

RL Dif	f. Included	<u>Likelihood (E>C)</u>
CO	-10%	0%
NOx	14%	99%
THC	18%	>99%
NMOG	32%	>99%
OFP	21%	>99%
OFPCO	17%	>99%
TOX	13%	>99%
TOXPW	5%	92%

^{*} Positive number indicates an increase in emissions for 10% ethanol blend with a one psi RVP increase

Findings

- ◆ Test program meets the criteria specified in HSC section 43830(g)
 - Independently verifiable automobile emission test data
 - Representative automobile fleet
- ❖ Test program results demonstrate that gasoline containing 10% ethanol with a 1 psi RVP increase results in increased ozone forming potential in comparison to complying gasoline
- ◆ Test program results are statistically significant with a high degree of certainty (>90%)

Findings (Continued)

- ◆ Test program results are consistent with the findings of previous test programs that evaluate the effect of fuel oxygen and RVP on motor vehicle emissions
- ♦ Test program results are consistent with modeling results using the US EPA complex model
- ❖ Independent peer review supports staff's evaluation
- Conclusion
 - 10% ethanol did not qualify for full RVP waiver

Future Activities / Conclusion

Future Activities

- Update predictive model
 - Add new vehicle technology group
 - Develop evaporative emissions model
 - Evaluate changes to specifications, including sulfur
 - Other work as appropriate

Conclusions

- ♦ Cleaner-Burning Gasoline provides significant and essential air quality benefits
- ◆ California is neutral as to type of oxygenate
- ◆ California is flexible on amounts of oxygenate
- ♦ Congressional mandate imposes oxygen requirements in California
- ❖ Flexibility to reduce use of oxygenates while maintaining benefits are limited without relief from federal mandate